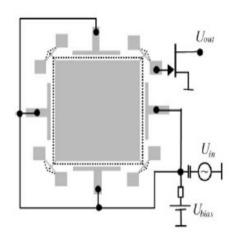


In-plane bulk-mode resonators (Lamé, breathing...)

Here $h=10 \mu m$ thick


Fig. 1. Square-extensional microresonator ($f_0 = 13.1$ MHz and $Q = 130\,000$). (a) Schematic of the resonator showing the vibration mode in the expanded shape and biasing and driving setup. (b) SEM image of the resonator.

V. Kaajakari et al., « Square-Extensional Mode Single-Crystal Silicon Micromechanical Resonator for Low-Phase-Noise Oscillator Applications », IEEE ELECTRON DEVICE LETTERS, VOL. 25, NO. 4, 2004

Bulk mode: large mass, high Q, can make as thick as technology allows

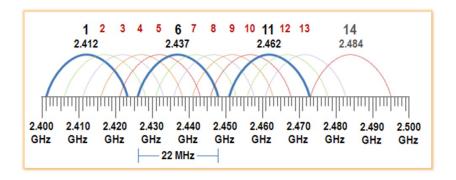
Scaling Laws & Simulations in Micro & Nanosystems

For this mode, the spring constant is:

$$k = \pi^2 Y_{2D} h$$

With
$$Y_{2D}$$
= 181 GPa

 $320 \ x \ 320 \ x \ 10 \ \mu m^3$


- 1. Compute f_{res} for given dimensions
- 2. How does f_{res} depend on h?

$$\frac{1}{20} = \frac{1}{11} + \frac{1}{12} - \frac{2}{12} = \frac{1}{11} = \frac{1}{11}$$

Frequency

- If we allow max 0.1% change in frequency, how much change in L can be tolerated?
- Is this feasible? (= how well can we control L?)

Motion due to ES force

- Compute k. how does this compare to spring constants you usually see in MEMS? Stiffer? Softer?
- compute the electrostatic force from the bias voltage only
 - Gap is 0.75 μm,
 - electrode length is 290 μm,
 - Bias voltage = 100 V.
- compute the electrostatic force from the AC voltage
 - Q=6200
 - V_{ac} = 1 V
- Compute the static displacement due to the bias voltage. Comments?

Thermal vs. mechanical energy

- At resonance, we have $x_{vib} = 1.5 \text{ nm}$
- Compare thermal energy and mechanical energy. Your comments?
- E_{mech}: how does it scale with h? With V?
- How low would the bias voltage have to be to have: $E_{mech} = 100 \text{ x } E_{thermal}$?